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ABSTRACT
Lionfish (Pterois volitans/miles) are an invasive species in the Western Atlantic and the
Caribbean. Improving management of invasive lionfish populations requires accurate
total biomass estimates, which depend on accurate estimates of allometric growth;
sedentary species like lionfish often exhibit high levels of spatial variation in life history
characteristics.We reviewed 17 published length-weight relationships for lionfish taken
throughout their invasive range and found regional differences that led to significant
misestimates when calculating weight from length observations. The spatial pattern we
observed is consistent with findings from other studies focused on genetics or length-
at-age. Here, the use of ex situ parameter values resulted in total biomass estimates
between 76.2% and 140% of true observed biomass, and up to a threefold under-
or overestimation of total weight for an individual organism. These findings can
have implications for management in terms of predicting effects on local ecosystems,
evaluating the effectiveness of removal programs, or estimating biomass available for
harvest.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Marine Biology, Natural Resource
Management, Population Biology
Keywords Lionfish, Invasive species, Length-weight, Allometric growth, Regional variations,
Biological invasions

INTRODUCTION
Lionfish (Pterois volitans/miles complex) are an invasive species in the Western
Atlantic Ocean and Caribbean Sea, likely introduced through release of aquarium-kept
organisms (Betancur-R et al., 2011). Lionfish are the first invasive marine vertebrates
established along these coasts (Schofield, 2009; Schofield, 2010; Sabido-Itza et al., 2016), and
they have established populations in coral reefs, estuaries, mangroves, hard-bottomed areas,
and mesophotic reefs (Barbour et al., 2010; Jud et al., 2011; Muñoz, Currin & Whitfield,
2011; Claydon, Calosso & Traiger, 2012; Andradi-Brown et al., 2017; Gress et al., 2017).
Their presence has been labeled as a ‘‘major marine invasion’’ because they threaten local
biodiversity, spread rapidly, and are difficult to manage (Hixon et al., 2016).

A substantial amount of research describes lionfish impacts throughout their invaded
range. A meta-analysis by Peake et al. (2018) showed that invasive lionfish prey on at least
167 different species across the tropical and temperate Western Atlantic. Their feeding
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behavior and high consumption rates can reduce recruitment and population sizes of
native reef-fish species, and can further endanger reef fish (Green et al., 2012; Rocha et al.,
2015; but see Hackerott et al. (2017) for a counterexample). For example, field experiments
showed that lionfish in the Bahamas led to reduced recruitment of native fishes by nearly
80% over a five-week period (Albins & Hixon, 2008), and prey fish biomass declined by
65% over two years as lionfish biomass increased along Bahamian coral reefs (Green et
al., 2012). However, trophic impacts of lionfish can be minimized if their local biomass is
controlled by culling (Arias-Gonzalez et al., 2011).

Governments and non-profit organizations have sought to reduce lionfish densities
through removal programs and by incentivizing its consumption (Chin, Aiken &
Buddo, 2016). In some cases, these have shown to significantly reduce—but not quite
eliminate—lionfish abundances at local scales (de Leon et al., 2013; Sandel et al., 2015).
Complete eradication of lionfish through fishing is unlikely because of their rapid
recovery rates and ongoing recruitment to shallow-water areas from persistent populations
in mesophotic ecosystems (Barbour et al., 2011; Andradi-Brown et al., 2017). However,
promoting lionfish consumption might create a level of demand capable of incentivizing
a stable fishery while controlling shallow-water populations, thus creating alternative
livelihoods and avoiding further negative effects to local biota.

The feasibility of establishing fisheries through lionfish removal programs has been
extensively evaluated through field observations and empirical modeling (Barbour et al.,
2011; Morris, Shertzer & Rice, 2011; de Leon et al., 2013; Johnston & Purkis, 2015; Sandel
et al., 2015; Usseglio et al., 2017). Determining the feasibility of such initiatives requires
modeling the change in biomass in response to changes in fishing mortality (i.e., culling). A
common way to model this is via length-structured population models, where fish lengths
are converted to weight to calculate total biomass (Barbour et al., 2011; Côté et al., 2014;
Andradi-Brown et al., 2017). The allometric length-weight relationship is thus an essential
component of these models, but this relationship can vary across regions as a response to
biotic and abiotic conditions (Johnson & Swenarton, 2016).

Outcomes of previous studies suggest lionfish are likely to exhibit spatial heterogeneity
in the length-weight relationship for both behavioral and biological reasons. Important
life history characteristics such as growth or natural mortality rates are often spatially
variable for fish that exhibit sedentary behavior (Gunderson et al., 2008; Hutchinson, 2008;
Wilson et al., 2012; Guan et al., 2013), and in fact, high levels of site fidelity and small home
ranges are two primary reasons why culling programs are effective in reducing local adult
lionfish populations (Fishelson, 1997; Kochzius & Blohm, 2005; Jud & Layman, 2012; Côté
et al., 2014). Genetic analysis of lionfish also identified two genetically distinct invasive
subpopulations between the Western Atlantic and the Caribbean, suggesting the existence
of spatially explicit biological differences between populations as well (Betancur-R et al.,
2011). Site-specific studies that calculate the length-weight relationship of lionfish report
variable estimates, and these differencesmay be increasingly important when estimating the
potential effectiveness of lionfish culling programs (Barbour et al., 2011;Morris, Shertzer &
Rice, 2011; Côté et al., 2014; Johnston & Purkis, 2015). However, the influence of using ex
situ parameters when estimating the length-weight relationship remains unexplored.
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Our objective was to quantify the magnitude of error caused by using ex situ parameter
valueswhen estimating lionfishweight from length observations. In this study, we calculated
and reported the first length-weight relationship for lionfish in the central Mexican
Caribbean using previously collected in situ observations (n= 109; Villaseñor-Derbez &
Herrera-Pérez (2014)). We then estimated lionfish weight in this area using previously
published length-weight relationships for lionfish populations from ten locations across
the Western Atlantic, Gulf of Mexico, and Caribbean. By comparing these weight estimates
to our in situ length-weight observations, we showed that using ex situ parameter values
resulted in up to a threefold under- or overestimation of lionfish weight and estimated
total biomass ranged between 76% and 140% of observed total biomass.

METHODS
We reviewed 12 published studies and obtained 17 length-weight relationships for the
Western Atlantic (n= 2), Gulf of Mexico (n= 7), and Caribbean (n= 8), Table 1, Fig. 1.
Study sites included North Carolina, the Northern and Southern Gulf of Mexico, the
Southern Mexican Caribbean, the Bahamas, Little Cayman, Jamaica, Bonaire, Puerto
Rico, and Costa Rica (Barbour et al., 2011; Darling et al., 2011; de Leon et al., 2013; Fogg
et al., 2013; Dahl & Patterson, 2014; Edwards, Frazer & Jacoby, 2014; Toledo-Hernández,
2014; Sandel et al., 2015; Aguilar-Perera & Quijano-Puerto, 2016; Sabido-Itza et al., 2016;
Sabido-Itzá, Aguilar-Perera & Medina-Quej, 2016; Chin, Aiken & Buddo, 2016). We have
access only to the summarized information published in these studies—not the raw
data authors used to make length-weight calculations. We collected information on sex
differentiation, location, length and depth ranges, and sampling methods from each study
when available. Only two studies reported sex-specific length-weight parameters (Aguilar-
Perera & Quijano-Puerto, 2016; Fogg et al., 2013), so we assumed data were reported for
both sexes combined in all other studies. Reviewed studies presented information for
organisms ranging from 25–475 mm in Total Length (TL) and were obtained at depths
between 0.5 m and 57 m. Four studies explicitly stated that their organisms were sampled
with pole spears (Dahl & Patterson, 2014; Aguilar-Perera & Quijano-Puerto, 2016; Chin,
Aiken & Buddo, 2016; Sabido-Itzá, Aguilar-Perera & Medina-Quej, 2016), and six studies
mentioned that some of their organisms were obtained with pole spears (or other type
of harpoon) but also hand-held nets or fish traps (Barbour et al., 2011; Fogg et al., 2013;
Edwards, Frazer & Jacoby, 2014; Toledo-Hernández, 2014; Sandel et al., 2015; Sabido-Itza et
al., 2016). Two studies did not specify how organisms were sampled (Darling et al., 2011;
de Leon et al., 2013).

We also used data from 109 lionfish sampled by Villaseñor-Derbez & Herrera-Pérez
(2014), who used hand nets and numbered bottles to collect Total Length (TL; mm) and
Total Weight (TW; g) for organisms from 10 sampling sites along the central Mexican
Caribbean coast in the summer of 2010 (Table S1). Sampling locations included wall and
carpet reefs at depths between 5.7 m and 38.1 m. The use of hand nets prevented any
weight loss due to bleeding and allowed better representation of small sizes by avoiding
gear selectivity. Organisms were euthanized via pithing.
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Table 1 Summary of 18 allometric growth parameters available for lionfish in the invaded range from peer-reviewed literature and this study.
All parameters have been adjusted to convert from millimeters to grams.

Region Sex n a b R2 Reference

Western Atlantic B 774 2.90 2.89 – Barbour et al. (2011)
Western Atlantic B – 0.25 3.29 – Darling et al. (2011)
GoM B 934 0.21 3.34 0.98 Dahl & Patterson (2014)
GoM B 472 0.29 3.30 0.95 Aguilar-Perera & Quijano-Puerto (2016)
GoM F 67 0.12 3.47 0.95 Aguilar-Perera & Quijano-Puerto (2016)
GoM M 59 0.42 3.23 0.95 Aguilar-Perera & Quijano-Puerto (2016)
GoM B 582 0.14 3.43 0.99 Fogg et al. (2013)
GoM M 119 0.27 3.31 0.97 Fogg et al. (2013)
GoM F 115 0.68 3.14 0.94 Fogg et al. (2013)
Caribbean B 458 3.60 2.81 – Sandel et al. (2015)
Caribbean B 419 2.80 2.85 0.87 Chin, Aiken & Buddo (2016)
Caribbean B 1,450 2.30 2.89 0.92 de Leon et al. (2013)
Caribbean B 1,887 0.30 3.24 0.97 Edwards, Frazer & Jacoby (2014)
Caribbean B 2,143 0.52 3.18 0.99 Sabido-Itza et al. (2016)
Caribbean B 227 0.80 3.11 0.96 Toledo-Hernández (2014)
Caribbean B 449 0.23 3.25 0.97 Sabido-Itzá, Aguilar-Perera & Medina-Quej (2016)
Caribbean B 368 0.32 3.19 0.98 Sabido-Itzá, Aguilar-Perera & Medina-Quej (2016)
Caribbean B 109 0.32 3.23 0.98 This study

Notes.
n, Sample size, Sex specifies whether data was presented for Females (F), Males (M), or both sexes combined (B); a, scaling parameter (presented in×10−5); b, exponent.
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Figure 1 Locations where allometric growth parameters of lionfish (Pterois spp) have been reported.
Circle sizes indicate sample size from each study, colors indicate the b coefficient from (1).

Full-size DOI: 10.7717/peerj.6667/fig-1
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The weight-at-length relationship for lionfish in the central Mexican Caribbean was
calculated with the allometric growth function:

TW = aTLb (1)

where a is the ponderal index and b is the scaling exponent or allometric parameter.
We linearized the equation using log10-transformation and estimated the coefficients
using an Ordinary Least Squares Regression with a heteroskedastic-robust standard error
correction (Zeileis, 2004). Coefficients were tested with a two-tailed Student’s t -test, and
the significance of the regression was corroborated with an F-test. Some of the reviewed
studies (Table 1, Fig. 1) inconsistently defined a as either the ponderal index from Eq. (1)
or the y-intercept from the linearized log-transformed equation. Other studies incorrectly
reported parameters as mm-to-g conversions when they were in fact cm-to-g conversions.
We standardized each study by converting coefficients and report all parameters as TL
(mm) to TW (g) conversions.

We obtained a total of 18 parameter pairs by combining length-weight parameters
extracted from the literature and the additional pair calculated here (Table 1). Recall that
the objective of this study is not to describe differences in the length-weight relationship
between populations (which would require access to raw data), but rather to assess how
ex situ parameter values influence the accuracy of weight estimates for lionfish, using
the central Mexican Caribbean as a case study. Using each of the 18 parameter pairs,
we estimated TW from the TL observations collected in the central Mexican Caribbean
(n= 109, withTL ranging from34mm to 310mm) and divided predictedweights by known
observed weights to obtain a simple measure of over- or underestimation. Difference in
mean weight ratios were tested with an analysis of covariance (ANCOVA):

Ri,j = µ̃+αj+βTLij+eij (2)

where Rij is the weight ratio for the i-th organism obtained with parameters from the j-th
study, µ̃ is a constant for all individuals, aj is the treatment effect (i.e., the difference induced
by each study), TLij is the covariate (i.e., Total Length for the i-th subject in the j-th group)
with slope β, and eij is the error term of the regression. Ratios were logit-transformed prior
to analysis, and a post-hoc Tukey’s test was used to identify groups where mean ratios did
not differ. All analyses were performed in R version 3.5.2 (R Core Team, 2018). Raw data
and code used in this work are available on github at github.com/jcvdav/lionfish_biometry.

RESULTS
The length-weight relationship for organisms from the central Mexican Caribbean
(Fig. 2) resulted in coefficient values of (a= 3.205×10−6) and b= 3.235 (R2

= 0.977,
F1,107 = 6928.67; p< 0.001). The allometric factor (b) was significantly different from
b= 3 (t107= 6.04; p< 0.001), corroborating that lionfish present allometric growth. The
length-weight coefficients estimated here were within the range identified by studies from
other regions (Fig. 3, Table 1).

ANCOVA results revealed significant differences in our predicted weight ratios for
the central Mexican Caribbean when using each of the different pairs of parameters
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Figure 2 Length-weight relationship for 109 lionfish sampled in the central Mexican Caribbean.
Points indicate samples, dashed black line indicates curve of best fit, marginal plots represent the density
distribution of each variable.

Full-size DOI: 10.7717/peerj.6667/fig-2

(F17,1943= 24.96; p< 0.001; Fig. 4). For example, the actual observed weights of the 109
lionfish from the Central Mexican Caribbean had a mean ± SD of 52.56 ± 76.58 g.
However, if we used allometric parameter values from Banco Chinchorro in the Caribbean
to predict weights from our observed length observations, we estimated a mean ± SD
of 40.37 ± 58.74 g (Sabido-Itzá, Aguilar-Perera & Medina-Quej, 2016). If we similarly
used parameter values from North Carolina in the Western Atlantic to estimate lionfish
weights in the Central Mexican Caribbean, we found a mean ± SD of 73.76 ± 96.11 g
(Barbour et al., 2011). Weights predicted from these extreme parameters correspond to
mean predicted-to-observed weight ratios of 0.80 ± 0.19 and 1.76 ± 0.50 (mean ± SD),
respectively. Furthermore, largest errors for individual organisms collected in the central
Mexican Caribbean resulted in ratios of 0.36 and 3.51 (i.e., the tails of each violin in Fig. 4).
If we examined biomass (i.e., summing across all 109 organisms) instead of mean ratios,
total biomass estimates were 76.2% (4,363.53 g) and 140% (8,039.96 g) of true observed
biomass (5,729.34 g). Parameters for this study estimate total biomass at 98% of observed
biomass (Fig. 5). These misestimates come from the two most extreme sets of parameters,
but results varied consistently across locations (Figs. 4 and 5). Overall, the use of ex situ
parameters led to significantly erroneous estimates of individual weight and total biomass
for lionfish.

Tukey’s post-hoc test showed that weight ratios for the central Mexican Caribbean
differed from those obtained with parameters from theWestern Atlantic in North Carolina
(Barbour et al., 2011), and most sites in the Caribbean and the Gulf of Mexico (Tukey’s
HSD p> 0.05). The only sites where weight ratios did not differ from the central Mexican
Caribbean were Little Cayman (Edwards, Frazer & Jacoby, 2014), Bahamas (Darling et al.,
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Figure 3 Length-weight relationships (n = 18) for 12 studies and this study. The curves are shown for
the range of lengths reported in each study (See Table S2); when ranges were not present, we use the ones
found in this study (34 mm–310 mm). Colors indicate studies from which the parameters were extracted.
Dotted, dashed, and solid lines show models for males, females, and combined sexes, respectively. Letters
in parentheses indicate if the study comes from the Gulf of Mexico (GoM), Western Atlantic (WA), or
Caribbean (Ca). The dashed black line represents the relationship estimated in this study. There are two
solid green lines for Sabido-Itza et al. (2016), one for each of the two sites for which they report parame-
ters. A log–log version of this figure is presented in Fig. S1.

Full-size DOI: 10.7717/peerj.6667/fig-3

2011), and the Northern Gulf of Mexico (Dahl & Patterson (2014); Tukey’s HSD p> 0.05).
All weight estimates using parameters from the Gulf of Mexico and Western Atlantic were
higher than observed values, and only parameters from the Caribbean produced weights
smaller than observed (Fig. 4). The regional average± SD of predicted-to-observed weight
ratios from these three regions were 1.24 ± 0.309, 1.41 ± 0.523, and 1.20 ± 0.423 for
the Gulf of Mexico, Western Atlantic, and Caribbean, respectively. This suggests that the
smallest errors are observed when using parameters from other locations in the Caribbean.

DISCUSSION
Our results suggest that lionfish exhibit highly variable, spatially heterogeneous allometric
relationships across their invaded range, and that this variation may be relevant for
managing invasions. Moreover, we show that the use of ex situ parameter values may lead
to highly biased weight and total biomass estimates. Our comparison of observed weights
to those predicted with locally-informed parameters and ex situ parameters showed that
weight of an individual lionfish can be overestimated by more than threefold, highlighting
the need to use local information. Here we discuss the implications of our findings, possible
shortcommings in our analyses, and highlight potential future research directions.
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Figure 4 Violin plot of predicted-to-observed weight ratios when applying each of 18 different pairs
of allometric parameters to the 109 lionfish collected in the central Mexican Caribbean. Sex is indicated
in parentheses. Blue circles indicate median values and like letters indicate values that do not differ signif-
icantly. For Sabido-Itza et al., 2016b, BC and PNAX make reference to Banco Chinchorro and Parque Na-
cional Arrecifes de Xcalak, two sites for which they report parameters.

Full-size DOI: 10.7717/peerj.6667/fig-4

Differences in length-weight relationships have traditionally beenhighlighted as potential
pitfalls to fishery management. For example, Wilson et al. (2012) showed that small-scale
variations in length-at-age and fishing mortality in other Scorpaeniformes translate to
differential landings, effort, and catch per unit effort in the live fish fishery of California,
and that these differences must be taken into account in management plans. The lionfish
case poses the opposite scenario, where the manager desires to eradicate the species.
To accurately gauge both the effectiveness of lionfish removal efforts and the resources
needed to successfully manage an invasion, we must acknowledge and understand regional
biological differences in important variables such as allometric growth parameters.

We detected substantial differences in weight-at-length between organisms from the
Caribbean, Gulf of Mexico, and Western Atlantic. Groupings of predicted-to-observed
weight ratios identified in our post hoc testing aligned with the spatial distribution of
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Figure 5 Estimated total biomas relative to observed biomass (5,729.34 g) for 18 pairs of allometric pa-
rameters. Sex is indicated in parentheses. For Sabido-Itza et al. (2016), BC and PNAX make reference to
Banco Chinchorro and Parque Nacional Arrecifes de Xcalak, two sites for which they report parameters.

Full-size DOI: 10.7717/peerj.6667/fig-5

the examined studies, suggesting that these differences may be mediated by space. These
regional allometric differences mirror similar patterns in length-at-age of lionfish across
both their invaded and native regions (Pusack et al., 2016). Variation may be driven by
genetics or by organisms’ exposure to distinct environmental conditions. For example,
Betancur-R et al. (2011) used mitochondrial DNA to demonstrate the existence of two
distinct population groups, identified as the ‘‘Caribbean group’’ and ‘‘Northern Group’’,
and Fogg et al. (2015) alternatively suggested that length-at-age differences may be driven
by the environment.

One might be inclined to attribute all variation in the lionfish length-weight relationship
to the spatial origin of these parameters. However, samples from the 12 studies included
herewere not only collected in different locations, but also at different points in time, time of
the year, and across different depth and size ranges (See Table S2 for an extended version of
Table 1). The magnitude of the bias discovered in this study and our lack of understanding
the sources driving spatial variation for lionfish highlights the need to simultaneously
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collect length-weight information across the invaded range to test for spatially-induced
patterns and to link these findings to previously suggested environmental and genetic
structures. Such an endeavor would provide insight into lionfish biology and better
inform management. However, while we could not evaluate how these factors influenced
length-weight estimates from previous studies without raw data, we still show that a
lack of locally-calculated parameters can induce significant bias when calculating weight
from length observations. We demonstrate the importance of using in situ parameters to
obtain accurate weight estimates regardless of the underlying mechanisms driving variation
between populations.

Applying parameter estimates to lengths outside the range of lengths originally used to
estimate the parameters may also induce error. Our smallest observed organism was 34
mm in TL, and only two studies estimated parametrs with smaller organisms (Edwards,
Frazer & Jacoby, 2014; Sabido-Itza et al., 2016). By contrast, our largest organism had a TL
of 310 mm, which is well within the range of all other studies (the next smallest maximum
length was 325 mm; see Table S2). Due to the power function describing the allometric
relationship (i.e., Eq. (1)), the error in weight estimates is larger when extrapolation is
done for lengths that are larger than the maximum length used to estimate the parameters.
Our estimates are therefore conservative because we only used parameter pairs from other
studies to estimate weights for lionfish up to 310 mm in the Central Mexican Caribbean,
well within the range of lengths for which other parameters were estimated.

CONCLUSION
The results presented here have key implications for management. For example, Edwards,
Frazer & Jacoby (2014) simulated a lionfish culling program under two scenarios, one
using length-at-age and length-to-weight parameters from North Carolina and one using
parameters from Little Cayman. Their results show that using different parameters caused
up to a four-year difference in the time required for the simulated lionfish population to
recover to 90% of its initial biomass after removals ceased.

Here, we show that using one set of length-weight parameters versus another for a given
length can result in more than a threefold under- or overestimation of total weight for
individual fish, and that total biomass estimates may range between 76% and 140% of true
observed biomass. These differences become especially important when allocating resources
for lionfish removal programs, incentivizing lionfish fisheries as a source of alternative
livelihoods, or estimating ecosystem impacts. Research efforts focused on invasive lionfish
populations need to use parameters calculated for their region to the extent possible,
or use different sets of parameters that provide appropriate upper and lower bounds in
their results.
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