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Abstract

Coastal marine ecosystems face a host of pressures from both offshore and land-based

human activity. Research on terrestrial threats to coastal ecosystems has primarily focused

on agricultural runoff, specifically showcasing how fertilizers and livestock waste create

coastal eutrophication, harmful algae blooms, or hypoxic or anoxic zones. These impacts

not only harm coastal species and ecosystems but also impact human health and economic

activities. Few studies have assessed impacts of human wastewater on coastal ecosystems

and community health. As such, we lack a comprehensive, fine-resolution, global assess-

ment of human sewage inputs that captures both pathogens and nutrient flows to coastal

waters and the potential impacts on coastal ecosystems. To address this gap, we use a new

high-resolution geospatial model to measure and map nitrogen (N) and pathogen—fecal

indicator organisms (FIO)—inputs from human sewage for ~135,000 watersheds globally.

Because solutions depend on the source, we separate nitrogen and pathogen inputs from

sewer, septic, and direct inputs. Our model indicates that wastewater adds 6.2Tg nitrogen

into coastal waters, which is approximately 40% of total nitrogen from agriculture. Of total

wastewater N, 63% (3.9Tg N) comes from sewered systems, 5% (0.3Tg N) from septic, and

32% (2.0Tg N) from direct input. We find that just 25 watersheds contribute nearly half of all

wastewater N, but wastewater impacts most coastlines globally, with sewered, septic, and

untreated wastewater inputs varying greatly across watersheds and by country. Importantly,

model results find that 58% of coral and 88% of seagrass beds are exposed to wastewater

N input. Across watersheds, N and FIO inputs are generally correlated. However, our model

identifies important fine-grained spatial heterogeneity that highlight potential tradeoffs and

synergies essential for management actions. Reducing impacts of nitrogen and pathogens

on coastal ecosystems requires a greater focus on where wastewater inputs vary across the

planet. Researchers and practitioners can also overlay these global, high resolution, waste-

water input maps with maps describing the distribution of habitats and species, including

humans, to determine the where the impacts of wastewater pressures are highest. This will
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help prioritize conservation efforts.Without such information, coastal ecosystems and the

human communities that depend on them will remain imperiled.

Introduction

Coastal marine ecosystems face myriad human pressures, including those from climate

change, overfishing, offshore commercial uses, and land-based activities such as agriculture

[1]. Land-based stressors, such as nutrient and chemical pollution run-off, link coastal marine

systems to terrestrial human activities and represent important and often dominant stressors

in coastal ecosystems [2–4]. They also amplify risks from other anthropogenic stressors such

as climate change due to potential synergistic interactions among stressors [5, 6]. Agricultural

fertilizers and livestock waste have long been recognized as major contributors to coastal

eutrophication, harmful algal blooms, hypoxic zones, or anoxic dead zones [2, 4, 7, 8], with evi-

dence that these impacts can lead to substantial habitat degradation or loss [9, 10], fisheries

declines [11], and beach closures, among other environmental consequences. These impacts

are likely to get worse with global climate change [5, 9], particularly affecting coastal ecosys-

tems such as seagrasses [12], mangroves [13], salt marshes [14], and coral reefs [15] which are

vulnerable to even modest levels of nutrient input [16, 17].

In contrast to agricultural inputs, few high-resolution studies have measured and mapped

the impacts from human sewage on coastal ecosystems [16, 17]. Human sewage is both an

human health and ecological health issue [18] because of its dual role in increasing coastal

nitrogen (N) and transporting pathogens and other health hazards [18]. Its input is likely

accelerating due to population growth and increasing dietary protein consumption not just in

wealthy countries [19], but also in emerging economies like China and Brazil where diets are

shifting toward heavy protein consumption [20, 21].

Managing wastewater, particularly for non-sewered systems, has been a cornerstone of pub-

lic health intervention around the world [22, 23], and human sewage is known to contribute

substantially to anthropogenic N inputs [24–28]. But the solution space for wastewater treat-

ment can look very different for mitigating excess N input versus pathogen risk. Potential tra-

deoffs and synergies make it essential to coordinate assessment and management actions. For

example, most sewered systems concentrate and emit N while removing most pathogens [29–

31], while direct input exposes people to pathogens, but allows natural ecosystems to process

much of the N and in some cases can mitigate pathogen exposure [32]. Yet research on nutri-

ent input and pathogen risk from wastewater have largely occurred in isolation [33]. Despite

clear risks to both coastal ecosystems and public health, we presently lack globally comparable,

fine-scale estimates of both nutrient and pathogen inputs to coastal waters from human sewage

across all coastal ecosystems and communities worldwide [33]. Given finite resources, without

a fine-grained appraisal, policymakers presently have limited capacity to weigh options to pro-

tect coastal ecosystems and improve public health.

Existing models that estimate nitrogen inputs or pathogen inputs to surface water from

human sewage suffer from limitations. Global nutrient river export models that account for

human sewage rely on coarse-grained (0.5 by 0.5 degree) input data, focus primarily on the

largest watersheds, are limited to assessing input from sewered systems [25–29, 34–38], and

generally do not propagate inputs into coastal waters (instead focusing on watershed impacts).

Yet, over 60% percent of the planet’s population lack sewage connections (instead using open

defecation, pit latrines, or septic tanks) [39], the vast majority (>99%) of the global coastline is
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not adjacent to the mouth of the largest watersheds [3], and coastal ecosystems are known to

be sensitive to N inputs.

Similarly, the handful of global pathogen surface water studies, which primarily estimate

how human population growth and urbanization drive surface-water Cryptosporidium [40],

suffer from drawbacks. Like global N models, global pathogen models rely on a common

modeling design [40–43], are coarse-grained (0.5 by 0.5 degree), do not account for inputs

from non-sewered populations, and do not map surface water flows to coastal ecosystems. Fur-

thermore, while case studies can provide context for specific details–such as how fecal indica-

tor bacteria respond to environmental conditions [44], the effect of future climate change and

socioeconomic conditions [45] and continental-scale sensitivity and uncertainty analysis [46]

global pathogen wastewater studies report results at national or larger scales. This crucially

constrains our ability to assess the magnitude and distribution of coastal nutrient and patho-

gen stressors and develop regional and local policy recommendations and actions, much less

compare fine-grained pathogen impacts to nutrient impacts on coastal communities and

ecosystems.

Here, we present the first globally-comprehensive, fine-resolution (~1-km) assessment of N

and pathogen—measured as fecal indicator organisms (FIO)—inputs from wastewater from

nearly 135,000 watersheds and coastal areas that drain into the ocean. Our assessment lever-

ages a high-resolution geospatial model to quantify and map the contribution of N from direct,

septic, and sewer wastewater in 2015; to evaluate differences between N and pathogen inputs;

and to estimate potential exposure of two key sensitive coastal habitats (coral reefs and seagrass

beds) to these inputs. We estimate the total and relative contribution of N from different

sources of sewage, and identify where opportunities for wastewater N mitigation exist, and

how they may coincide or conflict with efforts to address pathogen inputs. Our work acknowl-

edges the existing tradeoffs in managing N and pathogens for ecosystem and human health,

but also identifies important synergies and win-win scenarios where interventions can pro-

duce benefits for humanity and the environment.

Data & methods

Overview of modeling approach

Global rasters of both nitrogen effluent (N, grams yr-1) and pathogens as measured by FIO

were developed following a similar approach. Population and settlement type data (~1km reso-

lution) were combined with national level statistics on protein consumption (for nitrogen

only) and the proportion of the population’s access to various levels of wastewater treatment

facilities. This included treated wastewater that drains to the ocean, as well as direct and septic

effluent within 1km of coastlines or surface water. Once the global raster was completed, we

summed total N and FIO for 142,625 watersheds or coastal areas, 134,846 of which flow into

or are adjacent to the ocean (vs. internal draining). Watershed effluents were attributed to cor-

responding coastal pourpoints–the location where surface water ‘pours’ into the ocean. For N,

at each pourpoint, the effluent was propagated into the coastal waters using a plume model

based on a logarithmic decay function [1]. The effluent plumes were used to determine the

extent to which different marine habitats are exposed to wastewater N. Finally, we benchmark

our methods and findings throughout our analysis (S1 Text in S1 File).

We utilized Python v3.7, R v3.6.3, and GRASS GIS v7.8.3 programming languages to con-

duct these analyses. All data are available at Knowledge Network for Biocomplexity (KNB)

https://doi.org/10.5063/F76B09 and code is available at https://github.com/OHI-Science/

wastewater.
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Creating global rasters of marine-relevant FIO and nitrogen from

wastewater

Population & settlement type. The driver of anthropological wastewater is human popu-

lation; consequently, mapping wastewater inputs requires fine-grained population data.

Within a country, access to treatment facilities depends on the level of urbanization (i.e., if the

population is an urban or rural settlement) [47]. Our model used the European Global Human

Settlement Population Layer version 4 (GHS-Pop), which provides population estimates for

2015 for raster cells at 30 arc-second resolution (1km at the equator). To identify rural and

urban pixels [48], we used the 2015 Global settlement layer settlement model grid

(GHS-SMOD) [48]. GHS-Pop allocates population from a census-derived, un-modeled

gridded population dataset—the Gridded Population of the World version 4 (GPWv4)—to

1km grid cells based on built area estimations derived from Landsat imagery. GHS-SMOD fur-

ther classifies GHS-Pop pixels into settlement typologies following a rural-to-urban contin-

uum based on grid cell population size, density, and built area estimations. We aggregated the

GHS-SMOD levels of settlement into two urban and rural classes based on the GHS-SMOD

documentation in order to match sanitation and removal factors, as described below. While

many gridded population datasets exist and show variation [49, 50], GHS-Pop is the only

gridded population dataset that has corresponding settlement typologies (e.g. GHS-SMOD)

developed from a common modeling paradigm.

Sanitation facilities and removal rates. Wastewater N and FIO inputs into the ecosystem

from human sewage depend on the type of treatment. To estimate the amount of N removed

from wastewater via sanitation facilities (or lack thereof), we used national statistics from

WHO-UNICEF 2017 Joint Monitoring Project (JMP) [39], as has been done in previous stud-

ies [21, 27]. This dataset describes the proportion of the country’s population with access to

wastewater treatment in 2015. For most countries, data describing access to wastewater treat-

ment were available for both urban and rural areas allowing us to account for the large within-

country differences in access to sanitation. We group JMP wastewater treatment types into

three broader categories: open defecation (direct), septic tanks (septic), or some level of sew-

ered treatment (see S1 Table in S1 File for exact matching to JMP column).

We used access to sanitation to calculate N production coefficients. This can be thought of

as the inverse of removal efficiency: higher numbers indicate more N reaches the ocean. Popu-

lations that use treatment types with lower removal rates will have a higher production

coefficient.

We assigned the three sewage treatment categories of nitrogen removal efficiency based on

literature [28]. We estimated treatment plants remove 55% of N [28], while septic removes

80% [51] and open defecation has no N removal. Therefore, the combined N removal factor of

a given location is the sum of the products of the removal efficiency rates and percent of each

type of access to sanitation. We acknowledge there is a significant range for these removal

rates, based on landscape traits (e.g., soil type and vegetation cover) and especially for sewage

treatment systems, which have N removal of 10% to 90% from primary to tertiary treatment

systems [21, 27]. Because there is no global database of wastewater treatment facilities, our

model used a uniform N removal rate for sewage systems. Nonetheless, as better data becomes

available it will be possible to update the model results using the code that we made publicly

available.

We modeled FIO production as a function of sanitation infrastructure and population size

(similar to [40]) to evaluate the exposure of coastal ecosystems to FIOs. The amount of patho-

gens (FIO) removed from wastewater for the three input types was informed by a case study
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that used more than 1,000 samples to determine FIO effluents across sanitation types [52].

These results for septic tanks have been confirmed elsewhere in the literature [53].

As noted above, most countries report access to treatment categories at the urban/rural

level. When urban/rural data were not available, we used national-level statistics to impute N

removal rates. For any jurisdictions not covered in the JMP dataset, we used the median of the

UN geopolitical region [54] at development-level specific values (e.g. the median urban N

removal rates of all countries in the same geopolitical region was used to impute the missing

urban N removal rate). In the case of FIOs, for countries with missing data, we employed a

random forest model to estimate FIO sanitation factors based on a nation’s population size,

the proportion of the population that is rural, and national-level FIO sanitation factors. In our

analysis, random forests outperformed other commonly used algorithms, based on a 10-fold

cross validation process for parameter tuning, followed by a 70/30 training/testing split for

model selection (S1 Fig in S1 File). The final model was then used to predict missing FIO val-

ues. As with N factors, we used geopolitical medians to impute values for jurisdictions not cov-

ered in the JMP data. We used UN geopolitical medians [54] to impute the specific values.

Finally, for both FIO and N, our model assumed that populations with inputs from septic

tanks or open defecation that are more than 1km away from surface waters and coastlines do

not contribute to effluent totals. To accomplish this, we set the weight coefficient for septic

tanks to 0 based on a 1km binary surface water raster, resampled from the 15 arc-second

HydroSheds dataset [55].

Quantifying amounts of effluent. Following previous work [29], the model used FAO’s

Food Balance Sheets, which track national estimates for grams of protein consumed per capita

per year, to calculate pixel-level N effluents [56]. For each pixel, we multiplied this value by the

population size to obtain annual protein consumed in grams. Metabolic studies have estab-

lished that 16% of the protein we ingest is excreted as different forms of N [57]. We thus scaled

the pixel-level consumption by 0.16 to obtain N excretion base. These values were then multi-

plied by the N removal factors calculated above, which indicate the proportion of Nitrogen

that escapes treatment and reaches the watersheds. For example, a value of 0.5 would indicate

that 50% N excreted in a pixel would reach the pourpoint in a given watershed. This results in

a 1km N (grams year-1) effluent raster for 2015.

The FAO Balance Sheets contain information for 178 countries on per capita annual grams

of protein consumed over a year. While this FAO dataset is the complete dataset on food con-

sumption, it lacked information for 87 of the jurisdictions considered in our analyses, warrant-

ing some imputation. Previous literature has long-established a link between buying power

and protein consumption [58]. Therefore, we constructed a database of national-level protein

consumption and per capita GDP. A linear regression model (S2 Table and S2 Fig in S1 File)

was used to impute protein consumption for places without per capita GDP data (n = 36).

For 51 jurisdictions, protein consumption data were not available. From these, 13 are unin-

habited areas, and therefore protein consumption is not relevant. For the remaining 38 miss-

ing values, we calculated the median protein consumption for each UN geopolitical region and

assigned this value to each country. S3 Table in S1 File shows the values and type of imputation

used for each location. S3 Fig in S1 File shows the distribution and fit of imputed values, rela-

tive to observed known values. We were not able to obtain individual human production value

estimates for FIOs and therefore we report FIO’s in this analysis as a unitless measure that cor-

relates with population.

Watershed summation. We used high resolution watershed vector data with correspond-

ing pourpoints [1] (e.g. coastal location where watersheds empty into oceans). Boundaries for

~140,000 global basins were developed with an automated flow-accumulation process [59] on

the basis of 30 arc-second (~ 1km) SRTM30 Digital Elevation Model (DEM) data [60, 61]. The
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dispersion of the wastewater pollution into the ocean was then modeled from each basin’s

pourpoint which describes the location where freshwater enters the ocean. For each watershed

with a pourpoint draining into the ocean (N = 134,846), we estimated total N, N by treatment

type (sewered, septic, and open), and FIO inputs by summing the values for all grid cells falling

within the watershed boundary. We then attributed each effluent type to the watershed’s corre-

sponding coastal pourpoint. To estimate each nation’s discharge into the World’s oceans, we

summed the effluents for all the pourpoints falling within the country.

Plumes & habitat overlap. Pourpoint effluents were propagated with a coastal plume

model at 1km resolution into the ocean using a decay function following [1]. We first removed

pourpoints with< 1g N, retaining 66,309 coastal pourpoints. We then applied the plume

model to distribute values into coastal waters based on a cost-path (in our case, 0.5% of the

value in the previous cell) surface until a minimum threshold (0.05% of global maximum) is

reached. This approach to modeling river plumes allows drivers to wrap around headlands

and islands, but does not account for nearshore advection that acts to push N (or other inputs)

in particular directions.

The modeled wastewater plume data was used to determine the exposure of coral and sea-

grass to N inputs from wastewater. We rasterized spatial polygon and point data describing

global coral reef [62] and seagrass bed [63] locations to create raster maps of ~0.5 km resolu-

tion. These cells were then aggregated to ~1km resolution consistent with the output from the

plume model. Cells including the habitat were classified as 1, and otherwise set to no value.

We used a higher resolution for the initial rasterization to ensure a higher probability of cap-

turing smaller polygon areas because the habitat is not identified in the cell unless it overlaps

with the center of the raster cell. We extracted the N values for each sanitation system and the

total N from all wastewater for each raster cell containing the habitat. Finally, we defined hot-

spots as habitat raster cells exposed to total wastewater N values equal to or greater than the

97.5th quantile determined across the entire range of the habitat.

Results & discussion

Our model indicates that wastewater inputs into coastal waters account for an estimated 6.2Tg

N of total anthropogenic N in coastal ecosystems globally. This estimate matches those from

previous studies (wastewater N range: 4.0–7.2TgN), suggesting our model is reasonable, and is

roughly 45% (40–52%) of the amount of N from agriculture [24, 27, 28, 64]. Of total wastewa-

ter N, 63% (3.9Tg N) comes from sewered systems, 5% (0.3Tg N) from septic, and 32% (2.0Tg

N) from direct input. However, unlike previous studies, our fine-resolution model allows for

identification of locations of particularly high (or low) inputs (Fig 1), and the relative contribu-

tion of different wastewater types to any location (S4a-S4d Fig in S1 File), highlighting sub-

stantial variation by country and region (Fig 2). The model suggests that wastewater input of

N from watersheds into coastal waters is highly concentrated, with half (n = 67,308) of all

watersheds adding no nitrogen or pathogens. Just 25 watersheds contribute approximately

46% (2.8Tg N) of global N inputs from wastewater into the ocean (S2a Fig and S4 Table in S1

File). These watersheds are concentrated in India, Korea and China but are also found in other

continents, and a single watershed—the Chang Jiang (Yangtze) River in northern China—

accounting for (11%) of global wastewater N.

The source of wastewater N varies across these watersheds from predominantly sewered

(e.g., The Netherlands, USA, Argentina) to predominantly direct input (e.g., The Democratic

Republic of the Congo, Nigeria, India, China) (Fig 2 and S4a-S4d Fig in S1 File). While previ-

ous studies have suggested that wastewater input of N is not significant in Africa and South

America [25], these studies have not included septic and direct wastewater input. Our model
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results indicate that wastewater input in these regions exceeds that of many countries in

Europe and Asia (Fig 2). Furthermore, when normalized by watershed size, per-area N input is

substantial for many more watersheds, with ‘hotspots’ in several Mediterranean countries,

Mozambique, and the United States, among other places (S4 Table in S1 File), where the input

is very high relative to the size of the watershed.

Concern for wastewater input of N in coastal habitats has focused on particularly vulnerable

ones such as coral reefs and seagrass beds [15, 18]. Modeling the plume of wastewater N into

coastal waters, we estimate about 58% of all coral reefs globally and 88% of all seagrass beds

experience at least some anthropogenic N input from wastewater. We identify hotspots of

exposure for coral occurring in China, Kenya, Haiti, India and Yemen, and hotspots of expo-

sure for seagrass occurring in Ghana, Kuwait, India, Nigeria, and China (Fig 3). For 79% of

coral reef areas with N inputs, the dominant source of wastewater N is from direct or septic

input, and areas with particularly high inputs dominated by untreated wastewater include:

East Africa (Kenya, Tanzania, Mozambique, Madagascar), Asia (Sri Lanka, Myanmar, Viet-

nam, Philippines), and, in the Caribbean, Haiti. For seagrass beds, 52% of areas with N input

are dominated by direct or septic inputs, with Eastern Africa along the Gulf of Guinea (Benin,

Fig 1. Global distribution of total wastewater N. A) Global map of the terrestrial sources (green to blue) and coastal diffusion of inputs (yellow to purple) of total

wastewater N, measured in log10(gN) in both. Coastal plumes have been buffered to line segments to exaggerate patterns to be visible at the global scale. Insets show

zoomed-in views of the B) Ganges, C) Danube, and D) Chang Jiang (Yangtze) Rivers, showing wastewater plumes at high resolution.

https://doi.org/10.1371/journal.pone.0258898.g001
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Nigeria, Togo, Ghana) having particularly high N inputs from untreated sewage. These results

highlight the importance of tracking inputs from these sources in addition to sewer wastewa-

ter, particularly for coral. Given the proximity of many of these habitats to human populations,

wastewater impacts are additionally compounded by pressure from overfishing and habitat

degradation from coastal development, along with climate driven [5] and other anthropogenic

Fig 2. Total nitrogen input into Exclusive Economic Zone (EEZ) waters of coastal countries, by source type (sewer, septic, direct). The global total wastewater

input is 6.2Tg N, with 3.9Tg from sewers, 0.3Tg from septic, and 2Tg from direct input. The top 40 countries are shown in the horizontal bar chart; remaining

countries are in the pinwheel, grouped by continent or larger geographical region. Values for all countries are also reported in S5 Table in S1 File. Note that the

Netherlands is shown in both places (in red) to help connect the scale of the two parts of the figure.

https://doi.org/10.1371/journal.pone.0258898.g002
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stressors [1]. Addressing wastewater mitigation could help build resilience to other stressors

by reducing the overall cumulative impact of human activities [65].

Wastewater carries human pathogens as well as excess N, and therefore poses a risk to both

human health and ecological health. To explore this issue, we modeled input into coastal

oceans of fecal indicator organisms (FIO) from watersheds and found that just 25 watersheds

contribute approximately 51% of FIO into the ocean (S4e Fig in S1 File). These top 25 water-

sheds are located on almost every continent, in particular in densely-populated deltas and estu-

aries in Southern and Eastern Asia, as well as in Africa (S4e Fig in S1 File). Often N and FIO

inputs are correlated, which makes sense given the common source, but in many locations we

Fig 3. Expected impact of N on sensitive coastal habitats. Maps show where A) coral reefs and B) seagrass beds are heavily impacted (raster

cells in top 2.5% of exposure; red dots), not impacted (no exposure to wastewater N; dark blue dots), or impacted but not in the top 2.5%

(yellow dots). Raster cells are represented as points which visually over-represents the habitat; red is overlaid on top which makes it visually

dominant; blue points are transparent and overlaid on green/yellow points such that higher densities of unimpacted areas are brighter blue.

https://doi.org/10.1371/journal.pone.0258898.g003
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find spatial heterogeneity (Fig 4). The ‘outliers’ when comparing N vs. FIO input (Fig 4) high-

light locations where management interventions may have simpler solutions because there is a

dominant wastewater concern within the region (either N or pathogens, but not both). The

two watersheds with the greatest input values emphasize these differences (Fig 4B): both the

Chang Jiang and Brahmaputra (which merges with the Ganges) have very high FIO input, but

the Chang Jiang has substantially higher N input while the Brahmaputra has much lower than

expected N.

In contrast, for the vast majority of places where N and FIO inputs are strongly correlated,

there is a substantial challenge in finding a comprehensive solution. Building and maintaining

primary and secondary sewer infrastructure can dramatically reduce FIO levels, but doing so

concentrates N with limited capacity to remove it [29, 66], creating large environmental

impacts from eutrophication at the location of sewage discharge. Direct and septic inputs into

landscapes leverage the capacity of natural ecosystems to take up N but do little to mitigate

FIO [52]. This inherent tradeoff between built versus natural infrastructure for wastewater

management requires careful attention to the balance between human health and ecological

health in management actions. Discussions around green (natural) versus gray (built) infra-

structure focus primarily on N removal and thus sidestep these potential tradeoffs, but do not

address the daunting (and expensive) task of N removal from built infrastructure. Tertiary

wastewater treatment that leverages a range of filtering and chemical processes is needed to

meaningfully remove N from wastewater [21], whereas nature can provide this service for free.

By mapping N and FIO impacts separately at the watershed scale, our results provide a critical

piece of information needed to inform these decisions.

The transboundary nature of watersheds creates a further challenge with the management

of wastewater impacts. For the largest 100 watersheds, more than half (N = 53) span national

boundaries, and watersheds spanning multiple boundaries (N = 846) account for 54% of the

total global watershed area. For example, understanding wastewater input and improving

management of wastewater in the Ganges River, which drains Nepal, northeastern India, and

parts of Bangladesh, requires sub-national assessment across these three countries. In Europe,

the Danube watershed spans 19 countries with different population sizes, cultures, economic

development, and levels of wastewater infrastructure and treatment. Even for modest-sized

watersheds, many span national boundaries; of the 4,133 watersheds >1,000 km2, 445 span a

national boundary. National-level reporting of wastewater inputs (e.g. [21]) makes addressing

inputs into coastal waters challenging. Our results provide needed clarity, highlighting FIO

and N inputs across all watersheds, as well as by country.

The global model we present here necessarily neglects important details about human com-

munities and ecosystem processes at local scales that would influence actual inputs of N and

pathogens from wastewater. Our model does not fully account for differences in land cover,

ecosystem processes, sanitation efficiency, and other biogeochemical processes, as we cannot

include a process-based model for every watershed (>100,000) on the planet. Most notably,

we have applied broad assumptions about N uptake in freshwater systems, even though local-

scale vegetation, soil type, slope, precipitation, seasonal dynamics, surface and groundwater

flow, and impoundment from dams, among other factors, are known to alter transport and

uptake dynamics. For watersheds with high instream retention, this may lead to overestima-

tion of impacts in coastal ecosystems, whereas for others with rapid flush times, we may under-

estimate coastal impacts [67]. N and FIO inputs may be much higher in many locations than

our results suggest because, Furthermore, along with locations of treatment plants and type

globally, data on the location of most septic systems and sewer outfalls were modeled rather

than observed, and we had no information on septic failure rates (or lack of actually using

drain fields) or permitted or accidental sewer overflow events. While this adds uncertainty to
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our model, our results may be conservative given high rates of septic tank failure observed in

case studies [e.g. 68] and, for treated N, we may overestimate actual N removal rates by treat-

ment plants [28].

We also did not address inputs of phosphorus, despite its role in eutrophication in some

ecosystems, or the many other chemicals and pollutants that are in wastewater that can have

negative consequences for habitats and species [17]. Like wastewater more broadly, marine

Fig 4. The relationship between watershed level input of N versus FIO. Watersheds for which total N exceeds (yellow to red colors) or is well below (green to blue

colors) expected levels given predicted nitrogen/pathogen outputs from their correlation. Global map (A) and scatterplots of all watersheds, both full extent (B) and

zoomed in (C). Watersheds for which the levels are proportional to expectations are white in the map, inclusive of the nearly 50% of (very small) watersheds for which

there is no nitrogen or pathogen inputs. Dots in the scatter plot are scaled to the size of the watershed.

https://doi.org/10.1371/journal.pone.0258898.g004
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conservation researchers and managers have historically neglected to address the wide variety

of wastewater pollutants that impact coastal ecosystems, and while we posit that the locations

of impacts of N will be similar to other wastewater pollutants, further research is needed.

Finally, we assumed diffusion into coastal waters, given the prohibitive complexity of global

coastal advective processes, and we could not account for human migration (in particular

through tourism) that would create pulses of wastewater input. Regional applications of our

approach would ideally incorporate as many of these details as possible.

Despite these limitations, our approach is the first to produce fine-resolution, comparable

data mapping land-based sources and downstream exposure of both pathogens and N in

coastal ecosystems. Our global findings are within range of similar studies, but provide a high-

resolution understanding of the spatial pattern of relative contribution of wastewater inputs to

coastal waters worldwide. Indeed, in terms of impacts to coral reefs, the geographic patterns

we map parallel other recent assessments of wastewater inputs to coastal waters [16, 17]. Simu-

lated inputs of diclofenac, an indicator of wastewater, mapped similar locations of wastewater

impacts on reef systems [16] in regions like the Tropical Atlantic, Western Indo-Pacific,

coastal Western India, and the Central-Indo Pacific (Fig 3), though we show a greater propor-

tion of reef areas impacted. Both models show that in sparsely populated regions like the East-

ern Pacific, with a high concentration of reefs, wastewater impacts are minimal. As such,

potential interventions at any scale can easily be assessed for environmental and public health

consequences, allowing direct comparison of outcomes at the hyper-local to the fully global,

and on land and in the ocean.

Our approach uses state-of-the-art, high-resolution data on urbanization and population

size, which allows us to identify the relative contribution of N from rural and urban popula-

tions worldwide at a much higher resolution than previous studies. The values aggregated to

watershed pourpoints and then plumed at high resolution into coastal waters is both novel and

of particular interest to marine conservation and public health. The advantage of our model is

that is provides a contrast between high spatial resolution demographic drivers and coarse-

grained landscape dynamics. We then couple modeled wastewater inputs with high-resolution

coastal plume models to capture the two objectives of our project: to map the input of N and

pathogens from sewer systems into coastal ecosystems as driven by the heterogeneous demo-

graphic patterns worldwide and produce a synthesis to contrast benefits and showcase how

these spatial patterns can be used to identify fine-grained trades offs between available solu-

tions relevant for policy makers. Finally, our model and resulting data can be useful for com-

paring our globally comprehensive results with in situ monitoring and case studies. For

instance, stable isotopes can be used to distinguish wastewater N from other anthropogenic

sources in coastal waters [68]. Triangulating high resolution global models of N sources and

impacts to coastal ecosystems with traditional water quality monitoring and N isotopes analy-

sis, as exemplified by studies from the tributaries to the Chesapeake Bay [68] and Sarasota Bay

in the United States [69], can benefit conservation and management with the dual-advantage

of combined bottom-up and top-down approaches. Our top-down model can thus be used to

identify priority hotspots for in-depth in situ monitoring that can pinpoint the true sources

and quantities of pollutants like N.

Wastewater inputs of pathogens and nitrogen into coastal oceans present clear challenges

to coastal ecosystems, public health, and economies across the planet. Beyond these direct

impacts, our results suggest that wastewater inputs are likely to interact with the plethora of

anthropogenic stressors to coastal ecosystems, leading to declining fisheries, habitat loss and

degradation, and human health impacts. Climate change is compounding these threats glob-

ally [5]. Yet the spatial distribution, overlap, and source of these inputs has remained largely

‘off the radar’ of most conservation organizations and management agencies. Efforts to address
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eutrophication in coastal waters need to give much greater attention to wastewater inputs, and

engage directly with public health sectors to balance environmental management actions with

human health needs and priorities. Equally, wastewater management to improve public health

needs to address the inevitable consequences for ecological health. Without awareness of each

issue and coordination across both, coastal ecosystems and the human communities that

depend on them will remain imperiled.
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